Cilostazol, a phosphodiesterase inhibitor, prevents no-reflow and hemorrhage in mice with focal cerebral ischemia

نویسندگان

  • Yoshiki Hase
  • Yoko Okamoto
  • Youshi Fujita
  • Akihiro Kitamura
  • Hitomi Nakabayashi
  • Hidefumi Ito
  • Takakuni Maki
  • Kazuo Washida
  • Ryosuke Takahashi
  • Masafumi Ihara
چکیده

BACKGROUND AND PURPOSE The Cilostazol Stroke Prevention Study II has shown a similar efficacy in stroke prevention but markedly fewer hemorrhagic events with the phosphodiesterase inhibitor cilostazol versus aspirin. The purpose of this study is therefore to investigate how cilostazol affects cerebral hemodynamics and whether it prevents hemorrhagic transformation induced by recombinant tissue plasminogen activator (rtPA) in a mouse model of focal ischemia/reperfusion. Particular emphasis will be placed on the plasma-microvessel interface. METHODS After receiving food containing 0.3% cilostazol or standard food for 7 days, adult C57BL/6J mice were subjected to middle cerebral artery occlusion/reperfusion with or without rtPA (10mg/kg) intravenously administered prior to reperfusion. Cerebral blood flow was monitored at several time points by laser speckle imaging in the 24 hour period post reperfusion, before neurobehavioral and histological assessment. The long-term effect of cilostazol on cerebral ischemia was analyzed in the non-rtPA cohort. RESULTS In the non-rtPA cohort, pretreatment by cilostazol significantly decreased the endothelial expression of adhesion molecules (P-selectin and intercellular adhesion molecule-1) and prevented platelet aggregation and leukocyte plugging in the microvessels after cerebral ischemia/reperfusion in the acute phase. Cilostazol significantly reduced mortality rate and improved motor function at 7 days post-ischemia/reperfusion. In the rtPA cohort, cilostazol significantly suppressed edema formation and hemorrhagic transformation with reduced density of microglial cells positive for matrix metalloproteinase-9 in the cerebral cortex and the striatum. In both cohorts, cilostazol significantly suppressed focal no-reflow, mitigated cerebral infarct, and improved neurological outcome. CONCLUSIONS Cilostazol may possess protective properties against cerebral ischemic injury by preventing no-reflow and hemorrhagic transformation, via maintenance of microvascular integrity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphodiesterase-III Inhibitor Prevents Hemorrhagic Transformation Induced by Focal Cerebral Ischemia in Mice Treated with tPA

The purpose of the present study was to investigate whether cilostazol, a phosphodiesterase-III inhibitor and antiplatelet drug, would prevent tPA-associated hemorrhagic transformation. Mice subjected to 6-h middle cerebral artery occlusion were treated with delayed tPA alone at 6 h, with combined tPA plus cilostazol at 6 h, or with vehicle at 6 h. We used multiple imaging (electron microscopy,...

متن کامل

Combination treatment with normobaric hyperoxia and cilostazol protects mice against focal cerebral ischemia-induced neuronal damage better than each treatment alone.

Normobaric hyperoxia (NBO) and cilostazol (6-[4-(1-cyclohexy-1H-tetrazol-5-yl)butoxyl]-3,4-dihydro-2-(1H)-quinolinone) (a selective inhibitor of phosphodiesterase 3) have each been reported to exert neuroprotective effects against acute brain injury after cerebral ischemia in rodents. Here, we evaluated the potential neuroprotective effects of combination treatment with NBO and cilostazol again...

متن کامل

The Effect of Enalapril on Brain Edema and Cytokine Production Following Transient Focal Cerebral Ischemia in Mice

Introduction: Cytokines production as one of the inflammatory pathways in CNS is responsible for most brain damages following ischemia. On the other hand, during inflammation and brain ischemia, most of the renin- angiotensin components (RAS) increase locally. While it is established that blockade of RAS especially AT1 receptors has a protective effect on ischemia, the interaction of cytokines ...

متن کامل

L-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat

Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all.  Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...

متن کامل

Combinatorial effect of probucol and cilostazol in focal ischemic mice with hypercholesterolemia.

Hypercholesterolemia may increase stroke risk by accelerating atherosclerosis, narrowing the luminal diameter in cerebral vessels, and disrupting both vascular endothelial and smooth muscle function. In the present study, we investigated the beneficial effects of combinatorial therapy with probucol and cilostazol on focal cerebral ischemia with hypercholesterolemia. Apolipoprotein E (ApoE) knoc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental Neurology

دوره 233  شماره 

صفحات  -

تاریخ انتشار 2012